Respuesta :

Answer:

[tex]a=40+90n[/tex]

Step-by-step explanation:

Use a cofunction identity on the right hand side or left hand side...

So [tex]\tan(a)=\cot(90-a)[/tex].

We have the equation:

[tex]\tan(a)=\cot(a+10)[/tex]

Make the above replacement:

[tex]\cot(90-a)=\cot(a+10)[/tex]

Since cotangent has period 180 degrees, we can also write this as:

[tex]\cot(90-a+180n)=\cot(a+10)[/tex]

So solving the following will give us a set of solutions for [tex]a[/tex]:

[tex]90-a+180n=a+10[/tex]

Add [tex]a[/tex] on both sides:

[tex]90+180n=2a+10[/tex]

Subtract 10 on both sides:

[tex]80+180n=2a[/tex]

Divide both sides by 2:

[tex]40+90n=a[/tex]

Symmetric property:

[tex]a=40+90n[/tex]