Respuesta :

Answer:

∠CDF = 54

Step-by-step explanation:

In ΔAEB,

AE ≅ AB

∠ABE = ∠E  = x   {Angles opposite to equal sides are equal}

∠EAB + ∠E +∠ABE = 180  {angle sum property of triangle}

  26  + x + x  = 180

      26 + 2x = 180

              2x = 180 - 26

             2x = 154

               x = 154/2

x = 77

∠ABE = ∠E = 77

In quadrilateral AECF

∠A + ∠E + ∠C + ∠F = 360

90 + 77 + ∠C  + 90 = 360

                ∠C + 257 = 360

                        ∠C = 360 - 257

    ∠C = 103

∠FCD + ∠BCD  = ∠C

∠FCD +  67 =  103

        ∠FCD = 103 - 67

        ∠FCD  = 36

ΔFCD,

∠FCD + ∠CDF + ∠CFD = 180

36 + ∠CDF + 90 = 180

       ∠CDF + 126 = 180

                   ∠CDF = 180 - 126

                  ∠CDF = 54