Displacement of the airplane (s) = 2000 m
Initial velocity of the airplane (u) = 0 m/s (Starts from rest)
Final velocity of the airplane = 56.4 m/s
Equation used to solve the problem:
[tex] \boxed{ \bf{ {v}^{2} = {u}^{2} + 2as}}[/tex]
By substituting values in the equation, we get:
[tex] \rm \longrightarrow {56.4}^{2} = {0}^{2} + 2 \times a \times 2000 \\ \\ \rm \longrightarrow 3180.96 = 0 + 4000a \\ \\ \rm \longrightarrow 4000a = 3180.96 \\ \\ \rm \longrightarrow \dfrac{4000a}{4000} = \dfrac{3180.96}{4000} \\ \\ \rm \longrightarrow a = 0.80 \: m {s}^{ - 2} [/tex]
[tex] \therefore [/tex] Minimum uniform acceleration necessary for the plane to take flight (a) = 0.80 m/s²