Respuesta :

Answer:

QT = 45

Step-by-step explanation:

ST = 65

SP = 26

RQ = 30

QT = 4x - 3

Given that ∆STR is similar to ∆PTQ, therefore:

[tex] \frac{ST}{PT} = \frac{RT}{QT} [/tex]

Plug in the values

[tex] \frac{65}{65 - 26} = \frac{30 + (4x - 3)}{4x - 3} [/tex]

Solve for x

[tex] \frac{65}{39} = \frac{30 + 4x - 3)}{4x - 3} [/tex]

[tex] \frac{5}{3} = \frac{27 + 4x}{4x - 3} [/tex]

Cross multiply

[tex] 5(4x - 3) = 3(27 + 4x) [/tex]

[tex] 20x - 15 = 81 + 12x [/tex]

Collect like terms

[tex] 20x - 12x = 81 + 15 [/tex]

[tex] 8x = 96 [/tex]

Divide both sides by 8

[tex] x = \frac{96}{8} [/tex]

[tex] x = 12 [/tex]

✅QT = 4x - 3

Plug in the value of x

QT = 4(12) - 3 = 48 - 3

QT = 45