What is 56(cos(33°) + i sin(33°)) ÷ 7(cos(11°) + i sin(11°))?
8(cos(3°) + i sin(3°))
49(cos(3°) + i sin(3°))
8(cos(22°) + i sin(22°))
49(cos(22°) + i sin(22°))

Respuesta :

C. <3

pls give brainlyist

[tex]56(cos(33^{\circ}) + i sin(33^{\circ})) \div 7(cos(11^{\circ}) + i sin(11^{\circ}))\\\\=8(cos(22^{\circ}) + i~ sin(22^{\circ}))[/tex]

What is complex number?

"The number of the form a + ib, where a, b are real numbers and [tex]i=\sqrt{-1}[/tex]"

What is De Moivre's theorem?

"This theorem gives a formula for computing powers of complex numbers.

[tex](r(cos\theta+i~sin\theta))^n=r^n~(cos(n\theta)+i~sin(n\theta))[/tex] "

For given question,

We need to divide two complex numbers.

[tex]56(cos(33^{\circ}) + i sin(33^{\circ})) \div 7(cos(11^{\circ}) + i sin(11^{\circ}))[/tex]

Consider,

[tex]56(cos(33^{\circ}) + i~ sin(33^{\circ})) \div 7(cos(11^{\circ}) + i ~sin(11^{\circ}))\\\\=8[(cos(33^{\circ}) + i~ sin(33^{\circ})) \div (cos(11^{\circ}) + i ~sin(11^{\circ}))][/tex]                 ...........(i)

Consider the first complex number.

[tex](cos(33^{\circ}) + i sin(33^{\circ}))[/tex]

We can write this complex number as,

[tex]cos(3(11^{\circ}) )+ i sin(3(11^{\circ}))[/tex]

By De Moivre's theorem,

[tex]cos(3(11^{\circ}) )+ i~ sin(3(11^{\circ}))\\\\=(cos(11^{\circ})+ i~ sin(11^{\circ}))^3[/tex]

Substitute this value in (i),

[tex]56(cos(33^{\circ}) + i~ sin(33^{\circ})) \div 7(cos(11^{\circ}) + i ~sin(11^{\circ}))\\\\=8[(cos(33^{\circ}) + i~ sin(33^{\circ})) \div (cos(11^{\circ}) + i ~sin(11^{\circ}))]\\\\=8[(cos(11^{\circ}) + i~ sin(11^{\circ}))^3 \div 7(cos(11^{\circ}) + i~ sin(11^{\circ}))]\\\\=8[(cos(11^{\circ}) + i~ sin(11^{\circ}))^2]\\\\=8[(cos(2\times 11^{\circ}) + i~ sin(2\times 11^{\circ}))]~~~~~~~~~.............(De~Moivre's~theorem )\\\\=8(cos(22^{\circ}) + i~ sin(22^{\circ}))[/tex]

Therefore, [tex]56(cos(33^{\circ}) + i sin(33^{\circ})) \div 7(cos(11^{\circ}) + i sin(11^{\circ}))[/tex] is [tex]8(cos(22^{\circ}) + i~ sin(22^{\circ}))[/tex]

Learn more about the De Moivre's theorem here:

brainly.com/question/17211848

#SPJ3