What is the exact value of Tangent (StartFraction pi Over 12 EndFraction)

Answer:
a
Step-by-step explanation:
just did it and got right
The required value of the trigonometric operator tan(π/12) = 2 -√3. None of them is correct.
These are the equation that contains trigonometric operators such as sin, cos.. etc. In algebraic operation.
Let,
= [tex]tan(\pi /12) = tan((3-2)\pi /12)[/tex]
[tex]= tan[(3\pi -2\pi )/12]\\=tan(3\pi /2-2\pi /12)\\=tan(\pi /4-\pi /6)\\=\frac{tan(\pi/4)-tan(\pi/6)}{1+tan(\pi/4)tan(\pi/6)}[/tex]
= [tex]\frac{1-1/\sqrt{3} }{1+1*1/\sqrt{3} } \\[/tex]
[tex]=\frac{(\sqrt{3}-1)/\sqrt{3}}{(\sqrt{3}+1))/\sqrt{3}}[/tex]
[tex]=\frac{(\sqrt{3}-1)}{(\sqrt{3}+1)}\\=\frac{(\sqrt{3}-1)(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}+1)}\\=\frac{(3-2\sqrt{3}+1)}{(3-1)}\\\\=\frac{(4-2\sqrt{3})}{(2)}\\={(2-\sqrt{3})}\\[/tex]
Thus, the required value of the trigonometric operator tan(π/12) = 2 -√3. None of them is correct.
Learn more about trigonometry equations here:
brainly.com/question/22624805
#SPJ5