Homework: 5.1 Systems of Linear Equations
core: 0 of 1 pt
1 of 9 (5 complete)
5.1.19
Solve by the elimination
method.
7x - y = 51
x + 3y = 23
The solution set is
(Simplify your answer. Type an ordered

Homework 51 Systems of Linear Equations core 0 of 1 pt 1 of 9 5 complete 5119 Solve by the elimination method 7x y 51 x 3y 23 The solution set is Simplify your class=

Respuesta :

Answer:

[tex]\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}[/tex]

[tex]x=8,\:y=5[/tex]

Step-by-step explanation:

Given the system of linear equations

[tex]7x-y=51[/tex]

[tex]x+3y=23[/tex]

solving by the elimination method

[tex]\begin{bmatrix}7x-y=51\\ x+3y=23\end{bmatrix}[/tex]

[tex]\mathrm{Multiply\:}x+3y=23\mathrm{\:by\:}7\:\mathrm{:}\:\quad \:7x+21y=161[/tex]

[tex]\begin{bmatrix}7x-y=51\\ 7x+21y=161\end{bmatrix}[/tex]

[tex]7x+21y=161[/tex]

[tex]-[/tex]

[tex]\underline{7x-y=51}[/tex]

[tex]22y=110[/tex]

so

[tex]\begin{bmatrix}7x-y=51\\ 22y=110\end{bmatrix}[/tex]

now solving for y

[tex]22y=110[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}22[/tex]

[tex]\frac{22y}{22}=\frac{110}{22}[/tex]

[tex]y=5[/tex]

[tex]\mathrm{For\:}7x-y=51\mathrm{\:plug\:in\:}y=5[/tex]

[tex]7x-y=51[/tex]

[tex]7x-5=5[/tex]

[tex]7x=56[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}7[/tex]

[tex]\frac{7x}{7}=\frac{56}{7}[/tex]

[tex]x=8[/tex]

[tex]\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}[/tex]

[tex]x=8,\:y=5[/tex]