Respuesta :
Answer:
(8, 11)
General Formulas and Concepts:
Pre-Algebra
- Order of Operations: BPEMDAS
- Equality Properties
Algebra I
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
Step 1: Define systems
12x + 6y = 162
2x + 10y = 126
Step 2: Simplify systems
2x + y = 27
x + 5y = 63
Step 3: Rewrite systems
2x + y = 27
x = 63 - 5y
Step 4: Solve for y
- Substitute in x: 2(63 - 5y) + y = 27
- Distribute 2: 126 - 10y + y = 27
- Combine like terms: 126 - 9y = 27
- Isolate y term: -9y = -99
- Isolate y: y = 11
Step 5: Solve for x
- Define equation: x + 5y = 63
- Substitute in y: x + 5(11) = 63
- Multiply: x + 55 = 63
- Isolate x: x = 8
Answer:
x = 8 and y = 11
Step-by-step explanation:
solve for y
12x + 6y = 162
-12x -12x
6y = 162 - 12x
/6 /6
y = 27 - 2x
substitute
2x + 10(y) = 126
2x + 10(27 - 2x) = 126
2x + 270 - 20x = 126
-18x + 270 = 126
-270 -270
-18x = -144
-18 -18
x = 8
substitute again:
y = 27 - 2(x)
y = 27 - 2(8)
y = 27 - 16
y = 11