When simplified, StartFraction tangent (40 degrees) minus tangent (10 degrees) Over 1 + (tangent (40 degrees) ) (tangent 10 degrees) ) EndFraction is equivalent to which expression?

Respuesta :

Answer:

C. tan(30°)

Step-by-step explanation:

edge yuh yuhhhhh

The equivalent fraction is [tex]\frac{sin 40\textdegree. {cos10\textdegree} - {sin 10\textdegree}{cos40\textdegree}}{{cos 40\textdegree. {cos10\textdegree} + {sin 10\textdegree}{sin40\textdegree}}}[/tex].

The given expression is tan 40°-tan 10°/1+tan 40°.tan 10°.

How do simplify the trigonometric expression?

When simplifying trigonometric expressions, one approach is to change everything into sine or cosine.

Now, [tex]\frac{\frac{sin40\textdegree}{cos40\textdegree} -\frac{sin10\textdegree}{cos10\textdegree}}{1+\frac{sin40\textdegree}{cos40\textdegree} .\frac{sin10\textdegree}{cos10\textdegree} }[/tex]

=[tex]\frac{sin 40\textdegree. {cos10\textdegree} - {sin 10\textdegree}{cos40\textdegree}}{{cos 40\textdegree. {cos10\textdegree} + {sin 10\textdegree}{sin40\textdegree}}}[/tex]

Therefore, the equivalent fraction is [tex]\frac{sin 40\textdegree. {cos10\textdegree} - {sin 10\textdegree}{cos40\textdegree}}{{cos 40\textdegree. {cos10\textdegree} + {sin 10\textdegree}{sin40\textdegree}}}[/tex].

To learn more about trigonometric expression visit:

https://brainly.com/question/14746686.

#SPJ2