How do you solve this?

Answer:
[tex] x = 18 [/tex]
[tex] y = 7.5 [/tex]
[tex] z = 7 [/tex]
Step-by-step explanation:
✍️[tex] (8x - 7) + (3x - 11) = 180 [/tex] (consecutive interior angles are supplementary)
Solve for x
[tex] 8x - 7 + 3x - 11 = 180 [/tex]
Add like terms
[tex] 11x - 18 = 180 [/tex]
Add 18 to both sides
[tex] 11x = 180 + 18 [/tex]
[tex] 11x = 198 [/tex]
Divide both sides by 11
✅[tex] x = 18 [/tex]
✍️[tex] (2y + 23) = (4y + 8) [/tex] (alternate interior angles are congruent)
Solve for y
[tex] 2y + 23 = 4y + 8 [/tex]
Collect like terms
[tex] 23 - 8 = 4y - 2y [/tex]
[tex] 15 = 2y [/tex]
Divide both sides by 2
✅y = 7.5
✍️[tex] (2y + 23) + (3z^2 - 5) = 180 [/tex] (linear pair angles)
Plug in the value of y
[tex] (2(7.5) + 23) + (3z^2 - 5) = 180 [/tex]
[tex] (15 + 23) + (3z^2 - 5) = 180 [/tex]
[tex] 38 + 3z^2 - 5 = 180 [/tex]
Add like terms
[tex] 3z^2 + 33 = 180 [/tex]
Subtract 33 from each side
[tex] 3z^2 = 180 - 33 [/tex]
[tex] 3z^2 = 147 [/tex]
Divide both sides by 3
[tex] z^2 = \frac{147}{3} [/tex]
[tex] z^2 = 49 [/tex]
Square both sides
[tex] \sqrt{z^2} = \sqrt{49} [/tex]
[tex] z = 7 [/tex]