Respuesta :
Answer:
y=-2/3x-6
Step-by-step explanation:
y=mx+b
m=-2/3
y-y=m(x-x1)
y-(-1)=-2/3(x-(-6))
y+1=-2/3x-4
-1 -1
y=-2/3x-5
Answer:
[tex]y=-\frac{2}{3}x -5[/tex]
Step-by-step explanation:
Slope-intercept form:
[tex]y=mx+b\\\\y=(slope)x+(y-intercept)[/tex]
- m is the slope
- b is the y-intercept
- x and y are corresponding coordinate points (x,y)
When two lines are parallel, their slopes are the same. Take the slope from the given equation and insert into the new:
[tex]y=-\frac{2}{3} x+b[/tex]
Now find the y-intercept. For this, insert the given coordinate points and the slope into the equation to solve for b:
[tex](-6_{x},-1_{y})\\\\-1=-\frac{2}{3} (-6)+b[/tex]
Simplify multiplication using the rule [tex]\frac{a}{b} *c=\frac{ac}{b}[/tex] :
[tex]-1=-\frac{2(-6)}{3} +b\\\\-1=-\frac{-12}{3} +b\\\\-1=\frac{12}{3} +b\\\\-1=4+b[/tex]
Use inverse operations to isolate the variable. Subtract 4 from both sides:
[tex]-1-4=4-4+b\\\\-5=b[/tex]
The y-intercept is -5. Insert:
[tex]y=-\frac{2}{3}x -5[/tex]
:Done