Respuesta :

Answer:

y=-2/3x-6

Step-by-step explanation:

y=mx+b

m=-2/3

y-y=m(x-x1)

y-(-1)=-2/3(x-(-6))

y+1=-2/3x-4

-1 -1

y=-2/3x-5

Answer:

[tex]y=-\frac{2}{3}x -5[/tex]

Step-by-step explanation:

Slope-intercept form:

[tex]y=mx+b\\\\y=(slope)x+(y-intercept)[/tex]

  • m is the slope
  • b is the y-intercept
  • x and y are corresponding coordinate points (x,y)

When two lines are parallel, their slopes are the same. Take the slope from the given equation and insert into the new:

[tex]y=-\frac{2}{3} x+b[/tex]

Now find the y-intercept. For this, insert the given coordinate points and the slope into the equation to solve for b:

[tex](-6_{x},-1_{y})\\\\-1=-\frac{2}{3} (-6)+b[/tex]

Simplify multiplication using the rule [tex]\frac{a}{b} *c=\frac{ac}{b}[/tex] :

[tex]-1=-\frac{2(-6)}{3} +b\\\\-1=-\frac{-12}{3} +b\\\\-1=\frac{12}{3} +b\\\\-1=4+b[/tex]

Use inverse operations to isolate the variable. Subtract 4 from both sides:

[tex]-1-4=4-4+b\\\\-5=b[/tex]

The y-intercept is -5. Insert:

[tex]y=-\frac{2}{3}x -5[/tex]

:Done