Respuesta :

Answer:

w = 9

x = 12

y = 5

z = 3

Step-by-step explanation:

The corresponding sides of similar polygons are proportional.

Therefore:

[tex] \frac{w}{3} = \frac{x}{4} = \frac{15}{y} = \frac{9}{z} = \frac{6}{2} [/tex]

Solve for each variable as follows:

✔️[tex] \frac{w}{3} = \frac{6}{2} [/tex]

Multiply both sides by 3

[tex] w = \frac{6}{2} \times 3 [/tex]

[tex] w = 3 \times 3 [/tex]

[tex] w = 9 [/tex]

✔️[tex] \frac{x}{4} = \frac{6}{2} [/tex]

Multiply both sides by 4

[tex] x = \frac{6}{2} \times 4 [/tex]

[tex] x = 3 \times 4 [/tex]

[tex] x = 12 [/tex]

✔️[tex] \frac{15}{y} = \frac{6}{2} [/tex]

Cross multiply

[tex] y \times 6 = 2 \times 15 [/tex]

[tex] 6y = 30 [/tex]

Divide both sides by 6

[tex] y = 5 [/tex]

✔️[tex] \frac{9}{z} = \frac{6}{2} [/tex]

Cross multiply

[tex] z \times 6 = 2 \times 9 [/tex]

[tex] 6z = 18 [/tex]

Divide both sides by 6

[tex] z = 3 [/tex]