Answer:
The probability will be "0.0111".
Step-by-step explanation:
The given values are:
Mean,
[tex]\mu[/tex] = 79
Standard deviation,
[tex]\sigma[/tex] = 3.5
Now,
⇒ [tex]\sigma\bar x = \frac{\sigma}{\sqrt n}[/tex]
[tex]= \frac{3.5}{\sqrt 16}[/tex]
[tex]=0.875[/tex]
⇒ [tex]P(\bar x > 81) = 1 - P(\bar x < 81)[/tex]
So,
= [tex]1 - P{\frac{(\bar x - \mu \bar x )}{ \sigma \bar x} < \frac{(81 - 79) }{0.875} ][/tex]
= [tex]1 - P(z < 2.2857)[/tex]
= [tex]0.0111[/tex]