Recall the scenario about Eric’s weekly wages in the lesson practice section. Eric's boss has been very impressed with his work. He has given him a $2 raise and now Eric earns $12 an hour. His boss also has increased Eric’s work hours to 10 to 25 hours per week. The restrictions remain the same; he needs to work a full-hour in order to get the hourly wage (i.e. working 1.5 hour does not pay him for 1.5 hours but for one hour).


1.) function equation

2.) domain of the function in the set notation

3.) range of the function in the et notation

Respuesta :

Answer:

f(x)= 12x   where x is the number of hours worked (only whole numbers)

Domain= {10,11,12,13,.............., 25}

Range = { $ 120, $ 132,  $ 144,$ 156 ,$ 168, $ 180, $ 192, $ 204, $ 216, $ 228,        $ 240, $ 252, $ 264, $ 276, $ 288, $ 300}

Step-by-step explanation:

Let x be the number of hours worked then the function will be

f(x)= 12 (x)       for {x=10,11,12,13,.............., 25}

x cannot taken any fractional value or decimal value.

The domain of the function is the input values

Domain= {10,11,12,13,.............., 25}

Now range of the function is the set of all possible output values

f(10)= 12 *10= $ 120

f(11)=  12 *11= $ 132

f(12)=  12 *12= $ 144

f(13)=  12 *13= $ 156

f(14)=  12 *14= $ 168

f(15)=  12 *15= $ 180

f(16)=  12 *16= $ 192

f(17)=  12 *17= $ 204

f(18)=  12 *18= $ 216

f(19)=  12 *19= $ 228        

f(20)=  12 *20= $ 240

f(21)=  12 *21= $ 252

f(22)=  12 *22= $ 264

f(23)=  12 *23= $ 276

f(24)=  12 *24= $ 288

f( 25) = 12*25= $ 300

Range = { $ 120, $ 132,  $ 144,$ 156 ,$ 168, $ 180, $ 192, $ 204, $ 216, $ 228,        $ 240, $ 252, $ 264, $ 276, $ 288, $ 300}