Blood takes about 1.55 s to pass through a 2.00 mm long capillary. If the diameter of the capillary is 5.00 μm and the pressure drop is 2.45 kPa, calculate the viscosity ???? of blood. Assume laminar flow.

Respuesta :

Answer:

The viscosity [tex]\mathbf{\eta = 7.416 \times 10^{-4} \ N.s/m^2}[/tex]

Explanation:

From the given information:

Time t = 1.55 s

The radius of capillary = 5.00 μm /2

The pressure drop ΔP = 2.45 kPa

The length of the capillary = 2.00 mm

The viscosity of the blood flow can be calculated by using the formula:

[tex]\eta = \dfrac{r^2 \Delta P }{8Lv}[/tex]

where;

v = L/t

Then;

[tex]\eta = \dfrac{r^2 \Delta P }{8L(\dfrac{L}{t})}[/tex]

[tex]\eta = \dfrac{(\dfrac{5 \times 10^{-6} \ m}{2})^2(2.45 \times 10^3 \ Pa) }{8(2.0 \times 10^{-3} \ m ) (\dfrac{2.0 \times 10^{-3} \ m }{1.55 \ s })}[/tex]

[tex]\eta = 7.416 \times 10^{-4} \ Pa.s[/tex]

To (N.s/m²)

[tex]\mathbf{\eta = 7.416 \times 10^{-4} \ N.s/m^2}[/tex]