Answer:
The equation of the line will be:
[tex]y=\frac{1}{2}x+2[/tex]
Step-by-step explanation:
Given the point
As the equation of a line in slope-intercept form is
[tex]y-y_1=m\left(x-x_1\right)[/tex]
substituting the values m = 1/2 and the point (-4, 0)
[tex]y-y_1=m\left(x-x_1\right)[/tex]
[tex]y-0=\frac{1}{2}\left(x-\left(-4\right)\right)[/tex]
[tex]y=\frac{1}{2}\left(x-\left(-4\right)\right)[/tex]
[tex]y=\frac{1}{2}\left(x+4\right)[/tex]
[tex]y=\frac{1}{2}x+\frac{4}{2}[/tex]
[tex]y=\frac{1}{2}x+2[/tex]
Therefore, the equation of the line will be:
[tex]y=\frac{1}{2}x+2[/tex]