PLEASE ANSWER! I’m a tad desperate..


Select the show of Pascal’s triangle to expand the binomial expression (2x^3 + 3y^2)^7


1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

17 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1


Have a wonderful day! If you decide to answer I appreciate you very much! ❤️

Respuesta :

Answer:

1 7 21 35 35 21 7 1

Step-by-step explanation:

Pascal triangle is a mathematical expression that can be used to expand questions involving bracket, especially of high degree/ power. Example: [tex](a + b)^{9}[/tex] etc

For the given question, the Pascal triangle for the expansion is: 1 7 21 35 35 21 7 1

So that,

[tex](2x^{3}+3y^{2}) ^{7}[/tex] = 1.[tex](2x^{3}) ^{7}[/tex] + 7.[tex](2x^{3}) ^{6}[/tex].[tex]3y^{2}[/tex]  + 21. [tex](2x^{3}) ^{5}[/tex].[tex](3y^{2}) ^{2}[/tex] + 35.[tex](2x^{3}) ^{4}[/tex].[tex](3y^{2}) ^{3}[/tex] + 35. [tex](2x^{3}) ^{3}[/tex].[tex](3y^{2}) ^{4}[/tex] + 21. [tex](2x^{3}) ^{2}[/tex].[tex](3y^{2})^{5}[/tex] + 7.[tex](2x^{3} )^{1}[/tex].[tex](3y^{2} )^{6}[/tex] + 1.[tex](3y^{2}) ^{7}[/tex]

   = 128[tex]x^{21}[/tex] + 1344[tex]x^{18}[/tex][tex]y^{2}[/tex] +  6048[tex]x^{15}[/tex][tex]y^{4}[/tex] + 15120[tex]x^{12}[/tex][tex]y^{6}[/tex] + 22680[tex]x^{9}[/tex][tex]y^{8}[/tex] + 20412[tex]x^{6}[/tex][tex]y^{10}[/tex] + 10206[tex]x^{3}[/tex][tex]y^{12}[/tex] + 2187[tex]y^{14}[/tex]

Therefore;

[tex](2x^{3}+3y^{2}) ^{7}[/tex] = 128[tex]x^{21}[/tex] + 1344[tex]x^{18}[/tex][tex]y^{2}[/tex] +  6048[tex]x^{15}[/tex][tex]y^{4}[/tex] + 15120[tex]x^{12}[/tex][tex]y^{6}[/tex] + 22680[tex]x^{9}[/tex][tex]y^{8}[/tex] + 20412[tex]x^{6}[/tex][tex]y^{10}[/tex] + 10206[tex]x^{3}[/tex][tex]y^{12}[/tex] + 2187[tex]y^{14}[/tex]

Answer:

1, 8, 28, 56, 70, 56, 28, 8, 1

Step-by-step explanation: