Respuesta :

Answer:

Question 6

[tex]\left(5a+2\right)\left(a+4\right)=\:5a^2+22a+8[/tex]

Question 7

The width is 2x.

Step-by-step explanation:

                                           Question 6)

Expand

[tex](5a+2)(a+4)[/tex]

solving to the expand

[tex](5a+2)(a+4)[/tex]

  • [tex]\mathrm{Apply\:FOIL\:method}:\quad \left(a+b\right)\left(c+d\right)=ac+ad+bc+bd[/tex]

[tex]a=5a,\:b=2,\:c=a,\:d=4[/tex]

so the expression becomes

[tex]=5aa+5a\cdot \:4+2a+2\cdot \:4[/tex]

[tex]=5aa+5\cdot \:4a+2a+2\cdot \:4[/tex]

[tex]=5a^2+20a+2a+8[/tex]

adding similar elements: 20a+2a=22a

[tex]=5a^2+22a+8[/tex]

Hence,

[tex]\left(5a+2\right)\left(a+4\right)=\:5a^2+22a+8[/tex]

                                                  Question 7)

Given

  • [tex]A\:=\:8x^2[/tex]
  • [tex]l=4x[/tex]

Using the formula

width = Area/Length

          [tex]=\:\frac{8x^2}{4x}[/tex]

          [tex]=2x[/tex]                  ∵ [tex]\mathrm{Divide\:the\:numbers:}\:\frac{8}{4}=2[/tex]

Therefore, the width is 2x.