Just look at the picture lol.....The equations of three lines are given below. Line 1: 8x-6y=-2 3 Line 2: y=-x-5 4 Line 3: 4y=-3x+3 For each pair of lines, determine whether they are parallel, perpendicular, or neither. Line 1 and Line 2: Parallel O Perpendicular O Neither Х Line 1 and Line 3: O Parallel O Perpendicular O Neither Line 2 and Line 3: Parallel O Perpendicular Neither​

Just look at the picture lolThe equations of three lines are given below Line 1 8x6y2 3 Line 2 yx5 4 Line 3 4y3x3 For each pair of lines determine whether they class=

Respuesta :

Answer:

Step-by-step explanation:

We will use the following steps to solve this problem,

Step - (1).

Covert the equations into slope-intercept form.

Step - (2)

If the slopes of the two lines are equal, lines will be parallel.

[tex]m_1=m_2[/tex]

Step - (3)

If the slopes of the two lines are negative reciprocal, lines will be perpendicular.

[tex]m_1\times m_2=-1[/tex]

Line 1: 8x - 6y = -2

          6y = 8x +2

            y = [tex]\frac{4}{3}x+\frac{1}{3}[/tex]

Slope of line 1 = [tex]m_1=\frac{4}{3}[/tex]

Line 2: y = [tex]-\frac{3}{4}x-5[/tex]

Slope of line 2 = [tex]m_2=-\frac{3}{4}[/tex]

Line 3: 4y = -3x + 3

             y = [tex]-\frac{3}{4}x+\frac{3}{4}[/tex]

Slope of line 3 = [tex]m_3=-\frac{3}{4}[/tex]

1). Since, [tex]m_1\times m_2=\frac{4}{3}\times (-\frac{3}{4})=-1[/tex]

   Line 1 and line 2 are perpendicular.

2). Since, [tex]m_1\times m_3=\frac{4}{3}\times (-\frac{3}{4})=-1[/tex]

   Line 1 and line 2 are perpendicular.

3). Since, [tex]m_2=m_3=-\frac{3}{4}[/tex]

   Line 2 and line 3 are parallel.