Respuesta :

Answer:

The function is equivalent to

[tex]\frac{x+1}{x^3-x}=\frac{1}{x\left(x-1\right)}[/tex]

Step-by-step explanation:

Given the function

[tex]f\left(x\right)=\frac{x+1}{x^3-x}[/tex]

Let us simplify this function

[tex]f\left(x\right)=\frac{x+1}{x^3-x}[/tex]

        [tex]=\frac{x+1}{x\left(x+1\right)\left(x-1\right)}[/tex]     ∵ [tex]Factor\:x^3-x=x\left(x+1\right)\left(x-1\right)[/tex]

Cancel the common factor (x+1)

        [tex]=\frac{1}{x\left(x-1\right)}[/tex]

Therefore, the function is equivalent to

[tex]\frac{x+1}{x^3-x}=\frac{1}{x\left(x-1\right)}[/tex]

         

Answer:

wrong

Step-by-step explanation: