Time taken by a randomly selected applicant for a mortgage to fill out a certain form has a normal distribution with mean value 9 min and standard deviation 2 min. If five individuals fill out a form on one day and six on another, what is the probability that the sample average amount of time taken on each day is at most 11 min?

Respuesta :

Answer:

When the  sample size is  [tex]n_1 = 5[/tex] ,

   [tex]P( X < 11) = 0.9875[/tex]

When the  sample size is  [tex]n_2 = 6[/tex] ,

   [tex]P( X < 11) = 0.993[/tex]

Step-by-step explanation:

From the question we are told that

  The mean is  [tex]\mu = 9 \ min[/tex]  

   The standard deviation is [tex]\sigma = 2 \ min[/tex]

    The first sample size is  [tex]n_1 = 5[/tex]

    The second sample size is  [tex]n_2 = 6[/tex]

Generally the standard error of the mean is mathematically represented as

     [tex]\sigma_{x} = \frac{\sigma}{ \sqrt{n} }[/tex]

=>   [tex]\sigma_{x} = \frac{2}{ \sqrt{5} }[/tex]  

When the  sample size is  [tex]n_1 = 5[/tex] ,

Generally the standard error of the mean is mathematically represented as

     [tex]\sigma_{x} = \frac{\sigma}{ \sqrt{n} }[/tex]

=>   [tex]\sigma_{x} = \frac{2}{ \sqrt{5} }[/tex]  

=>   [tex]\sigma_{x} = 0.894[/tex]  

Generally the probability that the sample average amount of time taken on each day is at most 11 min is mathematically represented as

      [tex]P( X < 11) = P( \frac{X - \mu }{\sigma } < \frac{11 - 9 }{0.8944 } )[/tex]

[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]

      [tex]P( X < 11) = P( Z < 2.24 )[/tex]

From the z table  the area under the normal curve to the left corresponding to  2.24 is

      [tex]P( Z < 2.24 ) = 0.9875[/tex]

=>   [tex]P( X < 11) = 0.9875[/tex]

When the  sample size is  [tex]n_2 = 6[/tex] ,

Generally the standard error of the mean is mathematically represented as

     [tex]\sigma_{x} = \frac{\sigma}{ \sqrt{n} }[/tex]

=>   [tex]\sigma_{x} = \frac{2}{ \sqrt{6} }[/tex]  

=>   [tex]\sigma_{x} = 0.816[/tex]  

Generally the probability that the sample average amount of time taken on each day is at most 11 min is mathematically represented as

      [tex]P( X < 11) = P( \frac{X - \mu }{\sigma } < \frac{11 - 9 }{0.816 } )[/tex]

[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]

      [tex]P( X < 11) = P( Z < 2.45 )[/tex]

From the z table  the area under the normal curve to the left corresponding to  2.24 is

      [tex]P( Z < 2.45 ) = 0.993[/tex]

=>   [tex]P( X < 11) = 0.993[/tex]