Respuesta :
The [tex]3\times 3[/tex] matrix will be "[tex]\left[\begin{array}{ccc}0.3&0&-1.8\\0&1.3&3.9\\0&0&1\end{array}\right][/tex]".
According to the question,
The [tex]3\times 3[/tex] with homogenous coordinates is:
[tex]\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right][/tex]
Translation from (0, 0) to (a, b) will be:
[tex]T = \left[\begin{array}{ccc}1&0&a\\0&1&b\\0&0&1\end{array}\right][/tex]
Here,
- a = -6
- b = 4
Translation by (-5,4)
[tex]T = \left[\begin{array}{ccc}1&0&-6\\0&1&3\\0&0&1\end{array}\right][/tex]
Now,
- Let's find the scaling matrix 5.
- Scale the x-coordinated by "0.3" and y-coordinates by "1.3".
i.e.,
[tex]S = \left[\begin{array}{ccc}0.3&0&0\\0&1.3&0\\0&0&1\end{array}\right][/tex]
then,
The [tex]3\times 3[/tex] matrix will be:
→ [tex]A = ST[/tex]
[tex]= \left[\begin{array}{ccc}0.3&0&0\\0&1.3&0\\0&0&1\end{array}\right] \ \left[\begin{array}{ccc}1&0&-6\\0&1&3\\0&0&1\end{array}\right][/tex]
[tex]= \left[\begin{array}{ccc}0.3&0&-0.3\times 6\\0&1.3&1.3\times 3\\0&0&1\times 1\end{array}\right][/tex]
[tex]= \left[\begin{array}{ccc}0.3&0&-1.8\\0&1.3&3.9\\0&0&1\end{array}\right][/tex]
Thus the above answer is correct.
Learn more about Matrix here:
https://brainly.com/question/9035564