Solve for the values of x and y

SOLVING LEFT-SIDED RIGHT TRIANGLE
Answer:
The value of the missing length of the side x=26 units
Step-by-step explanation:
The Pythagorean theorem states
[tex]\:a^2\:+\:b^2\:=\:x^2[/tex]
We will use the Pythagorean Theorem to solve for the missing side length.
[tex]24^2\:+\:10^2\:=\:x^2[/tex]
switch both sides
[tex]x^2=24^2+10^2[/tex]
[tex]x^2=576+100[/tex]
[tex]\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}[/tex]
[tex]x=\sqrt{676},\:x=-\sqrt{676}[/tex]
[tex]x=26,\:x=-26[/tex]
As x can not be negative.
Therefore, the value of the missing length of the side x=26 units
SOLVING LEFT-SIDED RIGHT TRIANGLE
Answer:
The value of the missing length of the side y=15 units
Step-by-step explanation:
Considering the right-sided right triangle
The Pythagorean theorem states
[tex]a^2\:+\:b^2\:=\:c2[/tex]
We will use the Pythagorean Theorem to solve for the missing side length.
[tex]15^2\:+\:y^2\:=\:\left(15\sqrt{2}\right)^2[/tex]
[tex]225+y^2=450[/tex] ∵ [tex]\left(15\sqrt{2}\right)^2=450[/tex]
[tex]y^2=225[/tex]
[tex]y=\sqrt{225},\:y=-\sqrt{225}[/tex]
[tex]y=15,\:y=-15[/tex]
As y can not be negative.
Therefore, the value of the missing length of the side y=15 units