agracel65
contestada

A 10.0 kg mass is attached to the end of a 2.00 m long brass rod, which has a diameter of 1.00 mm and negligible mass. The mass at the end is pulled, stretching the rod slightly, and then released. If the elastic modulus of brass is 9.10 × 1010 N/m2, then the period of the resulting oscillations is
A. 0.175 sec.
B. 0.105 sec.
C. 0.133 sec.
D. 0.145 sec.
E. 0.167 sec.

Respuesta :

Answer:

The appropriate alternative is Option B (0.105 sec.).

Explanation:

The given values are:

Elastic modulus,

Y = 9.10 × 10¹⁰ N/m²

Mass,

m = 10.0 kg

Length of rod,

l = 2.00 m

Diameter,

d = 1.00 mm

Now,

⇒ [tex]Keq=\frac{AY}{l}= \frac{\pi D^2 Y}{4l}[/tex]

On substituting the values, we get

⇒                   [tex]=\frac{\pi \times 10^{-6}\times 9.1\times 10^{10}}{4\times 2}[/tex]

⇒                   [tex]=3.574\times 10^4[/tex]

The time period will be:

⇒ [tex]T=2\pi \sqrt{\frac{m}{Keq} }[/tex]

On substituting the above values, we get

⇒     [tex]=2\pi \sqrt{\frac{10}{3.574\times 10^4}}[/tex]

⇒     [tex]=0.105 \ seconds[/tex]

The time period resulting oscillations will be 0.1005 seconds.

What is the time period of oscillation?

The period is the amount of time it takes for a particle to perform one full oscillation. T is the symbol for it. Taking the reciprocal of the frequency yields the frequency of the oscillation.

The given data in the problem is;

[tex]\rm \gamma[/tex] is the elastic modulus=9.10 × 10¹⁰ N/m²

m is the mass= 10.0 kg

l is the length of brass rod= 2.00 m

d is the diameter of 1.00 mm

The value of the equivalent stiffness will be;

[tex]\rm K_{eq}= \frac{AY}{l}\\\\ \rm K_{eq}= = \frac{\pi d^2 Y}{4l} \\\\ \rm K_{eq}=\frac{3.14 \times 10^{-6}\times 9.1 \times 10^{10} }{4\times 2 } \\\\ \rm K_{eq}= 3.574 \times 10^4[/tex]

The time period of the  oscillation is given by;

[tex]\rm T = 2 \pi \sqrt{\frac{m}{k_{eq}} } \\\\ \rm T = 2 \times 3.14 \sqrt{\frac{10}{3.574 \times 10^4}[/tex]

[tex]\rm T = 0.105 \ sec[/tex]

Hence the time period resulting oscillations will be 0.1005 seconds.

To learn more about the time period of oscillation refer to the link;

https://brainly.com/question/20070798