Answer:
The distance between T and S is 10 units.
Step-by-step explanation:
Given the points
[tex]\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]
The distance between T and S is:
[tex]=\sqrt{\left(2-2\right)^2+\left(6-\left(-4\right)\right)^2}[/tex]
[tex]=\sqrt{\left(2-2\right)^2+\left(6+4\right)^2}[/tex]
[tex]=\sqrt{0+10^2}[/tex]
[tex]=\sqrt{10^2}[/tex]
[tex]=10[/tex] ∵ [tex]\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0[/tex]
Therefore, the distance between T and S is 10 units.