(04.04 LC)
On a coordinate grid, point T is at (2,-4) and point S is at (2,6). The distance (in units) between points T and S is
numbers, such as 2.)

Respuesta :

Answer:

The distance between T and S is 10 units.

Step-by-step explanation:

Given the points

  • T(2, -4)
  • S(2, 6)

[tex]\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]

The distance between T and S is:

[tex]=\sqrt{\left(2-2\right)^2+\left(6-\left(-4\right)\right)^2}[/tex]

[tex]=\sqrt{\left(2-2\right)^2+\left(6+4\right)^2}[/tex]

[tex]=\sqrt{0+10^2}[/tex]

[tex]=\sqrt{10^2}[/tex]

[tex]=10[/tex]              ∵ [tex]\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0[/tex]

Therefore, the distance between T and S is 10 units.