Respuesta :

Answer:

[tex]h'(e) = 7^{e-1}\cdot [7\cdot \ln 7+6\cdot e][/tex]

Step-by-step explanation:

Let [tex]h(x) = f(x)^{x}[/tex], the first derivative of the function is found by applying the concept of implicit differentiation:

[tex]h(x) = f(x)^{x}[/tex] (1)

[tex]\ln h(x) = x\cdot \ln f(x)[/tex]

[tex]\frac{h'(x)}{h(x)}=\ln f(x) +\frac{x\cdot f'(x)}{f(x)}[/tex]

[tex]h'(x) = h(x) \cdot \left[\ln f(x)+\frac{x\cdot f'(x)}{f(x)} \right][/tex]

[tex]h'(x) = f(x)^{x}\cdot \left[\ln f(x)+\frac{x\cdot f'(x)}{f(x)} \right][/tex]

[tex]h'(x) = f(x)^{x-1}\cdot [f(x)\cdot \ln f(x)+x\cdot f'(x)][/tex] (2)

If we know that [tex]x = e[/tex],  [tex]f(e) = 7[/tex] and [tex]f'(e) = 6[/tex], then [tex]h'(e)[/tex] is:

[tex]h'(e) = 7^{e-1}\cdot [7\cdot \ln 7+6\cdot e][/tex]