Find the centroid of the triangle with these vertices: P (-1,7), Q (9,5), and R (4,3).
The coordinates of the centroid are?​

Respuesta :

Answer:

The coordinates of the centroid are:

[tex]O\:=\:\left(4,\:5\right)\:\:[/tex]

The diagram is also attached below.

Step-by-step explanation:

Given the vertices

  • P (-1, 7)
  • Q (9, 5)
  • R (4, 3)

We know that the intersection of medians brings the centroid of the triangle.

The centroid of a triangle is given by

[tex]O\:=\:\left(\frac{P_x+Q_x+R_x}{3},\:\frac{P_y+Q_y+R_y}{3}\:\right)[/tex]

In this example,

[tex]P_x=-1,\:P_y=7[/tex]

[tex]Qx=9,\:Q_y=5[/tex]

[tex]Rx=4,\:R_y=3[/tex]

substituting in the formula

[tex]O\:=\:\left(\frac{-1+9+4}{3},\:\frac{7+5+3}{3}\:\right)\:\:[/tex]

[tex]O\:=\:\left(\frac{12}{3},\:\frac{15}{3}\:\right)\:\:[/tex]

[tex]O\:=\:\left(4,\:5\right)\:\:[/tex]

Therefore, the coordinates of the centroid are:

[tex]O\:=\:\left(4,\:5\right)\:\:[/tex]

The diagram is also attached below.

Ver imagen absor201

We've been given with the co-ordinates of vertices of the triangle and asked to calculate the co-ordinates of the centroid.

Centroid of a triangle :-

  • [tex]\red{\boxed{ \sf{Centroid \: = \: \dfrac{x_1 \: + \: x_2 \: + \: x_3}{3} } \: , \: \dfrac{y_1 \: + \: y_2 \: + \: y_3}{3} }} \: \pink\bigstar [/tex]

We have :

  • x₁ = -1
  • x₂ = 9
  • x3 = 4
  • y₁ = 7
  • y₂ = 5
  • y3 = 3

Substituting the values :

For x co-ordinate:-

[tex]: \: \implies \: \sf{x\: = \: \dfrac{x_{1} \: + \: x_2 \: + \: x_3}{3} } \\ \\ : \: \implies \: \sf{x\: = \: \dfrac{ - 1 \: + \: 9 \: + \: 4}{3}} \\ \\ : \: \implies \: \sf{x\: = \: \dfrac{ 8 \: + \: 4}{3} } \\ \\ : \: \implies \: \sf{x\: = \: \dfrac{ 12}{3} } \\ \\ : \: \implies \: \sf{x\: = \: \cancel\dfrac{ 12}{3} } \\ \\ : \: \implies \: \sf{x\: = \: 4 }[/tex]

For y co-ordinate:-

[tex]: \: \implies \: \sf{y\: = \: \dfrac{y_{1} \: + \: y_2 \: + \: y_3}{3} } \\ \\ : \: \implies \: \sf{y\: = \: \dfrac{ 7 + 5 + 3}{3}} \\ \\ : \: \implies \: \sf{y\: = \: \dfrac{ 10 \: + \: 5}{3} } \\ \\ : \: \implies \: \sf{y\: = \: \dfrac{ 15}{3} } \\ \\ : \: \implies \: \sf{y\: = \: \cancel\dfrac{ 15}{3} } \\ \\ : \: \implies \: \sf{y\: = \: 5 }[/tex]

Henceforth,

  • Co-ordinates are (4 , 5)

Additional Information :

Midpoint of two points:-

  • [tex]\boxed{ \sf{M \: = \: \dfrac{x_1 \: + \: x_2 }{2} \: , \: \dfrac{y_1 \: + \: y_2 }{2}}} \: \pink\bigstar[/tex]

Distance Formula :-

  • [tex]\huge \large \boxed{\sf{{d \: = \: \sqrt{(x _{2} - x _{1}) {}^{2} \: + \: (y _{2} - y _{1}) {}^{2} }}}} \: \red\bigstar[/tex]

Visit more :-

https://brainly.com/question/23658067

https://brainly.com/question/27354466

https://brainly.com/question/27354479

https://brainly.com/question/27354524

https://brainly.com/question/27354542