Respuesta :

Answer:

Step-by-step explanation:

In the given triangle AED,

Points B and D are the midpoints of sides AD and AE.

a). Therefore, AB = [tex]\frac{1}{2}(AD)[/tex]

   AB = [tex]\frac{90}{2}[/tex] = 45 ft

b). AE = 2(AC)

   AE = 2(30)

   AE = 60 ft

c). By mid-segment theorem,

   BC = [tex]\frac{1}{2}(DE)[/tex]

   BC = [tex]\frac{50}{2}=25[/tex] ft

d). EC = AC = 30 ft