Respuesta :

Answer:

The solution to the system of equations be:

[tex]y=-3,\:x=2[/tex]

Step-by-step explanation:

Given the system of equations

[tex]\begin{bmatrix}y=3x-9\\ y=-2x+1\end{bmatrix}[/tex]

Let us solve the system by the elimination method

[tex]\begin{bmatrix}y=3x-9\\ y=-2x+1\end{bmatrix}[/tex]

Arrange equation variables for elimination

[tex]\begin{bmatrix}y-3x=-9\\ y+2x=1\end{bmatrix}[/tex]

subtracting the equations

[tex]y+2x=1[/tex]

[tex]-[/tex]

[tex]\underline{y-3x=-9}[/tex]

[tex]5x=10[/tex]

so the system of equations becomes

[tex]\begin{bmatrix}y-3x=-9\\ 5x=10\end{bmatrix}[/tex]

solve 5x for x

[tex]5x=10[/tex]

Divide both sides by 5

[tex]\frac{5x}{5}=\frac{10}{5}[/tex]

[tex]x = 2[/tex]

[tex]\mathrm{For\:}y-3x=-9\mathrm{\:plug\:in\:}x=2[/tex]

[tex]y-3\cdot \:2=-9[/tex]

[tex]y-6=-9[/tex]

Add 6 to both sides

[tex]y-6+6=-9+6[/tex]

[tex]y=-3[/tex]

Therefore, the solution to the system of equations be:

[tex]y=-3,\:x=2[/tex]