Simplify....... will give BRAINLIEST....

Answer:
[tex] {10}^{x} [/tex]
Step-by-step explanation:
[tex] \sqrt{ {2}^{x} \times {5}^{2x} \div {2}^{ - x} } \\ \\ = \sqrt{ {2}^{x} \times {5}^{2x} \: \times {2}^{x} }\\ \\ = \sqrt{ {2}^{x + x} \times {5}^{2x}}\\ \\ = \sqrt{ {2}^{2x} \times {5}^{2x}}\\ \\ = \sqrt{ {(2 \times 5)}^{2x} }\\ \\ = \sqrt{ {(10)}^{2x} }\\ \\ = {10}^{x} [/tex]