Respuesta :

Answer:

We conclude that:

[tex]\left(x-2\right)^2=1[/tex]

Step-by-step explanation:

Given the expression

[tex]x^2-4x+3=0[/tex]

subtract 3 from both sides

[tex]x^2-4x+3-3=0-3[/tex]

[tex]x^2-4x=-3[/tex]

Add -2² to both sides

[tex]x^2-4x+\left(-2\right)^2=-3+\left(-2\right)^2[/tex]

simplify

[tex]x^2-4x+\left(-2\right)^2=1[/tex]

Applying the perfect square formula: (a-b)² = a²-2ab+b²

so

[tex]\left(x-2\right)^2=1[/tex]              ∵ [tex]x^2-4x+\left(-2\right)^2=\left(x-2\right)^2[/tex]

Therefore, we conclude that:

[tex]\left(x-2\right)^2=1[/tex]