Answer:
[tex]SD = 8.4932[/tex]
Step-by-step explanation:
Given
[tex]Sample\ Size (n) = 289[/tex]
[tex]proportion, p= 52\%[/tex]
Required
Determine the standard deviation (SD)
The standard deviation of a binomial distribution is calculated as thus:
[tex]SD = \sqrt{np(1-p)}[/tex]
Substitute values for n and p
[tex]SD = \sqrt{289 * 52\% * (1-52\%)}[/tex]
Convert to decimals
[tex]SD = \sqrt{289 * 0.52 * (1-0.52)}[/tex]
[tex]SD = \sqrt{289 * 0.52 * 0.48}[/tex]
[tex]SD = \sqrt{72.1344}[/tex]
[tex]SD = 8.49319727782[/tex]
[tex]SD = 8.4932[/tex] --- approximated
Hence, the calculated standard deviation is approximately 8.4932