Answer:
The parameters of the exponential distribution is 0.0133.
Step-by-step explanation:
Exponential distribution is a continuous probability distribution.
The density function of exponential distribution is,
[tex]f _{X}(x)=\theta \cdot e^{-\theta\cdot x},\ x\geq 0[/tex]
Here the parameter θ is the reciprocal of the mean of the random variable X.
The random variable X has an average value of 75 seconds.
Compute the parameters of the exponential distribution as follows:
[tex]\theta=\frac{1}{\mu}\\\\[/tex]
[tex]=\frac{1}{75}\\\\=0.013333333333\\\\\approx 0.0133[/tex]
Thus, the parameters of the exponential distribution is 0.0133.