Respuesta :

Answer:

[tex]f(0) = 14[/tex]

Step-by-step explanation:

Given

[tex]f(x) = \left \{ {{|x - 8| + 6 \ x<4} \atop {15\ x\ge 4}} \right.[/tex]

Required

Find f(0)

From the piecewise function, we have the following as values of f(x):

[tex]f(x) = |x - 8| + 6[/tex]

If [tex]x < 4[/tex]

[tex]f(x) = 15[/tex]

If [tex]x \ge 4\\[/tex]

f(0) implies that [tex]x =0[/tex] and [tex]0<4[/tex]

So, we make use of the first function, which is:

[tex]f(x) = |x - 8| + 6[/tex]

Substitute 0 for x in [tex]f(x) = |x - 8| + 6[/tex]

[tex]f(0) = |0 - 8| + 6[/tex]

[tex]f(0) = |- 8| + 6[/tex]

[tex]|-8| = 8[/tex]

So, the expression becomes

[tex]f(0) = 8 + 6[/tex]

[tex]f(0) = 14[/tex]

Hence, the value of f(0) is 14