Answer:
-2
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Calculus
Derivatives
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Quotient Rule: [tex]\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Step-by-step explanation:
Step 1: Define
[tex]\frac{d}{dx} [\frac{f(x)}{h(x)} ] \ at \ x = -2\\h(x) = x^3\\f(-2) = 8\\f'(-2) = 4[/tex]
Step 2: Differentiate
- Differentiate [Quotient Rule]: [tex]\frac{d}{dx} [\frac{f(x)}{h(x)} ] = \frac{f'(x)h(x) - f(x)h'(x)}{h(x)^2}[/tex]
- Differentiate h(x) [Basic Power]: h'(x) = 3x²
Step 3: Evaluate
- Define differential: [tex]\frac{f'(x)x^3 + f(x)[3x^2]}{(x^3)^2}[/tex]
- Substitute in variables: [tex]\frac{f'(-2)h(-2) + f(-2)h'(-2)}{h(-2)^2}[/tex]
- Substitute in variables: [tex]\frac{4(-2)^3 - 8[3(-2)^2]}{[(-2)^3]^2}[/tex]
- Evaluate: -2