Respuesta :

Answer:

[tex]z[/tex] is represented by point A.

Step-by-step explanation:

According to the De Moivre's Formula, the power of a complex number of the form [tex]z = r\cdot (\cos \theta + i\,\sin \theta)[/tex] is defined by this formula:

[tex]z^{n} = r^{n}\cdot [\cos n\theta + i\,\sin n\theta][/tex] (1)

Where:

[tex]r[/tex] - Norm of the complex number, dimensionless.

[tex]\theta[/tex] - Direction of the complex number, measured in radians.

[tex]n[/tex] - Power of the resulting complex number, dimensionless.

Given that [tex]z^{2} = \frac{1}{2}\cdot \left[\cos \left(\frac{2\pi}{5} \right)+ i\,\sin \left(\frac{2\pi}{5} \right)\right][/tex], then the following variables are:

[tex]r^{2} = \frac{1}{2}[/tex] (2)

[tex]2\theta = \frac{2\pi}{5}[/tex] (3)

And the norm and direction of the complex number are, respectively:

[tex]r = \frac{\sqrt{2}}{2}[/tex] and [tex]\theta = \frac{\pi}{5}[/tex]

Then, the complex number is:

[tex]z = \frac{\sqrt{2}}{2}\cdot \left[\cos \left(\frac{\pi}{5} \right)+i\,\sin \left(\frac{\pi}{5} \right)\right][/tex]

[tex]z = 0.572 + i\,0.416[/tex]

Which corresponds to point A.

Answer:

A

Step-by-step explanation:

takin the course. Give the top answer brainliest :)