Respuesta :

Answer:

Solving the equation [tex]-\frac{7}{10}=\frac{3a}{4}-\frac{13}{20}[/tex] we get: [tex]\mathbf{a=-\frac{1}{15} }[/tex]

Step-by-step explanation:

We need to solve the equation:

[tex]-\frac{7}{10}=\frac{3a}{4}-\frac{13}{20}[/tex]

And find the value of a

Solving the equation: [tex]-\frac{7}{10}=\frac{3a}{4}-\frac{13}{20}[/tex]

First we will be Switching sides

[tex]\frac{3a}{4}-\frac{13}{20}=-\frac{7}{10}[/tex]

Now, for finding value of a we will be adding 13/20 on both sides

[tex]\frac{3a}{4}-\frac{13}{20}+\frac{13}{20}=-\frac{7}{10}+\frac{13}{20}[/tex]

[tex]\frac{3a}{4}=-\frac{7}{10}+\frac{13}{20}[/tex]

Now, on right hand side, Taking LCM of denominators i.e 10 and 20, we get 20 and simplifying:

[tex]\frac{3a}{4}=\frac{-7*2+13}{20}\\\frac{3a}{4}=\frac{-14+13}{20}\\\frac{3a}{4}=\frac{-1}{20}[/tex]

Now, multiply both sides by 4/3

[tex]\frac{3a}{4}\times \frac{4}{3} =\frac{-1}{20}\times \frac{4}{3}\\a=\frac{-1}{5}\times \frac{1}{3}\\a= \frac{-1}{15}[/tex]

So, solving the equation [tex]-\frac{7}{10}=\frac{3a}{4}-\frac{13}{20}[/tex] we get: [tex]\mathbf{a=-\frac{1}{15} }[/tex]