Respuesta :
Answer:
Solving the equation [tex]-\frac{7}{10}=\frac{3a}{4}-\frac{13}{20}[/tex] we get: [tex]\mathbf{a=-\frac{1}{15} }[/tex]
Step-by-step explanation:
We need to solve the equation:
[tex]-\frac{7}{10}=\frac{3a}{4}-\frac{13}{20}[/tex]
And find the value of a
Solving the equation: [tex]-\frac{7}{10}=\frac{3a}{4}-\frac{13}{20}[/tex]
First we will be Switching sides
[tex]\frac{3a}{4}-\frac{13}{20}=-\frac{7}{10}[/tex]
Now, for finding value of a we will be adding 13/20 on both sides
[tex]\frac{3a}{4}-\frac{13}{20}+\frac{13}{20}=-\frac{7}{10}+\frac{13}{20}[/tex]
[tex]\frac{3a}{4}=-\frac{7}{10}+\frac{13}{20}[/tex]
Now, on right hand side, Taking LCM of denominators i.e 10 and 20, we get 20 and simplifying:
[tex]\frac{3a}{4}=\frac{-7*2+13}{20}\\\frac{3a}{4}=\frac{-14+13}{20}\\\frac{3a}{4}=\frac{-1}{20}[/tex]
Now, multiply both sides by 4/3
[tex]\frac{3a}{4}\times \frac{4}{3} =\frac{-1}{20}\times \frac{4}{3}\\a=\frac{-1}{5}\times \frac{1}{3}\\a= \frac{-1}{15}[/tex]
So, solving the equation [tex]-\frac{7}{10}=\frac{3a}{4}-\frac{13}{20}[/tex] we get: [tex]\mathbf{a=-\frac{1}{15} }[/tex]