Respuesta :

Find slope first
(0+1)/(10-4)= 1/6
Point slope: (y-y1) = m(x-x1)
Solution: (y+1) = 1/6(x-4)

Answer:

The equation of the line in point-slope will be:

[tex]y\:=\:\frac{1}{6}x-\frac{5}{3}[/tex]

Step-by-step explanation:

Given the points

  • (4, -1)
  • (10, 0)

Finding the slope between  (4, -1) and (10, 0)

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(4,\:-1\right),\:\left(x_2,\:y_2\right)=\left(10,\:0\right)[/tex]

[tex]m=\frac{0-\left(-1\right)}{10-4}[/tex]

[tex]m=\frac{1}{6}[/tex]

We know that the slope-intercept form of the line equation is

[tex]y = mx+b[/tex]

where m is the slope and b is the y-intercept

Using the slope-intercept form to find the y-intercept 'b'

[tex]y = mx+b[/tex]

substituting m = 1/6 and the point (4, -1)

[tex]-1\:=\:\frac{1}{6}\left(4\right)+b[/tex]

[tex]\frac{2}{3}+b=-1[/tex]

subtract 2/3 from both sides

[tex]\frac{2}{3}+b-\frac{2}{3}=-1-\frac{2}{3}[/tex]

[tex]b=-\frac{5}{3}[/tex]

now substituting b = -5/3 and m = 1/6 in the slope-intercept form

[tex]y = mx+b[/tex]

[tex]y\:=\:\frac{1}{6}x+\left(-\frac{5}{3}\right)[/tex]

[tex]y\:=\:\frac{1}{6}x-\frac{5}{3}[/tex]

Therefore, the equation of the line in point-slope will be:

[tex]y\:=\:\frac{1}{6}x-\frac{5}{3}[/tex]