Respuesta :

Answer:

The required equation is:

[tex]y=\mathbf{-0.271}x+\mathbf{13.876}[/tex]

Step-by-step explanation:

We have x = Distance of goal posts

y = field Goals made

The data given is:

x       y

20     9

25      6

30       7

35       4

40       1

45        2

50        1

We need to find the regression equation y = bx + a

Where [tex]b=\frac{SP}{SS_x} \:and\: a=M_y-bM_x[/tex]

Sum of all values of x = 245

Sum of all values of y = 30

Now, calculating mean using formula: [tex]Mean=\frac{Sum\:of\:all|\:values}{Number\:of\:values}[/tex]

Mean of x (Mₓ) = 35

Mean of y ([tex]M_y[/tex]) = 4.28

Sum of squares (SSₓ) = 700

Sum of products (SP) = -190

Now, finding b:

[tex]b=\frac{SP}{SS_x} \\b=\frac{-190}{700}\\b=-0.271[/tex]

Now, finding a:

[tex]a=M_y-bM_x\\a=4.28-(-0.271*35)\\a=13.786[/tex]

So, the required equation is:

[tex]y=\mathbf{-0.271}x+\mathbf{13.876}[/tex]