Write the expression as an algebraic expression of x that does not involve trigonometric functions:

[tex] csc({cos}^{ - 1} x)[/tex]

Respuesta :

Answer:

[tex]\displaystyle \csc(\cos^{-1}(x))=\frac{1}{\sqrt{1-x^2}}[/tex]

Step-by-step explanation:

Please refer to the attachment.

We have:

[tex]\csc(\cos^{-1}(x))[/tex]

First, we will let:

[tex]\cos^{-1}(x)=\theta[/tex]

Then:

[tex]x=\cos(\theta)[/tex]

So, the adjacent side of our triangle is x and the hypotenuse is 1.

Then by the Pythagorean Theorem, the opposite side is given by:

[tex]x^2+o^2=1^2[/tex]

So:

[tex]o=\sqrt{1-x^2}[/tex]

Going back, we have:

[tex]\csc(\cos^{-1}(x))[/tex]

Since arccos(x) is θ:

[tex]=\csc(\theta)[/tex]

Cosecant is the ratio of the hypotenuse over the opposite side. Therefore:

[tex]\displaystyle \csc(\theta)=\frac{1}{\sqrt{1-x^2}}[/tex]

Hence:

[tex]\displaystyle \csc(\cos^{-1}(x))=\frac{1}{\sqrt{1-x^2}}[/tex]

Ver imagen xKelvin