Respuesta :

Answer:

[tex]AB = 8.38[/tex]

Step-by-step explanation:

Given

[tex]AC = 9[/tex]

[tex]BC =10[/tex]

[tex]\angle B = 52[/tex]

Required

Determine AB

This question will be answered using the cosine law.

[tex](AB)^2 = (AC)^2 + (BC)^2 - 2(AC)(BC)\ \cos \angle B[/tex]

Substitute the expected values

[tex](AB)^2 = 9^2 + 10^2 - 2 * 9 * 10 * cos(52)[/tex]

[tex](AB)^2 = 81 + 100 - 180* cos(52)[/tex]

[tex](AB)^2 = 181 - 180* cos(52)[/tex]

[tex](AB)^2 = 181 - 180* 0.6157[/tex]

[tex](AB)^2 = 70.174[/tex]

Take square roots of both sides

[tex]AB = \sqrt{70.174[/tex]

[tex]AB = 8.38[/tex] -- approximated