Respuesta :

Answer:

[tex]B.\ 14.4\ units[/tex]

Step-by-step explanation:

[tex]We\ are\ given\ that,\\Coordinates\ of\ Endpoint\ O=x_1,y_1=(-2,9)\\Coordinates\ of\ Endpoint\ A=x_2,y_2=(6,-3)\\As\ we\ know\ that,\\The\ length\ of\ line\ segment\ OA\ or\ u\ is\ the\ distance\ between\ its\ endpoints\\ O\ and\ A.\\Hence,\\The\ linear\ distance(d)\ between\ any\ two\ points\ on\ a\ cartesian\ plane,\\ is\ given\ by\ the\ Formula:\\d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\Hence\ here,\\[/tex]

[tex]In\ order\ to\ find\ the\ distance\ between\ O\ and\ A,\ we\ just\ need\ to\ plug\ in\\ its\ respective\ coordinates\ in\ the\ Formula\ above.\\Hence,\\Distance\ between\ O\ and\ A= \sqrt{(6-(-2))^2+(-3-(9))^2} \\Distance\ between\ O\ and\ A= \sqrt{(6+2)^2+(-3-9)^2}\\Distance\ between\ O\ and\ A= \sqrt{(8)^2+(-12)^2}\\Distance\ between\ O\ and\ A= \sqrt{64+144}\\Distance\ between\ O\ and\ A= \sqrt{208}\\Distance\ between\ O\ and\ A \approx 14.42\ or\ 14.4\ units[/tex]

The answer to this question is b