Respuesta :

Answer:

w= 27.47 degree

x=9.99 cm

y=12.02 cm

Step-by-step explanation:

The value of w:

In a right-angled triangle [tex]\tan \theta = \frac {\text{Perpendicular}}{\text{Base}}[/tex]

[tex]\tan w = \frac {\text{Perpendicular}}{25+9}\;and \; \tan 63 = \frac {\text{Perpendicular}}{9}[/tex]

So, [tex]34 \tan w = 9\tan (63)[/tex]

[tex]\tan w = (9/34)\tan(63)=0.52 \\\\w=\tan^{-1}(0.52) \\\\[/tex]

w= 27.47 degree

The value of x:

In a right-angled triangle [tex]\sin \theta = \frac {\text{Perpendicular}}{\text{Hypotaneous}}[/tex]

sin (27) =x/22

x= 22sin(27)

x=9.99 cm

The value of y:

By using Pythagoras theorem,

[tex]y^2+y^2=17^2 \\\\2y^2 = 289 \\\\y^2 =289/2= 144.5 \\\\y=\sqrt {144.5} \\\\[/tex]

y=12.02 cm