Respuesta :

Answer:

63 42

53

53

52

Jdjdjdjfh

  • m∠APD = m∠DPC = m∠BPC = m∠APB = 90°
  • m∠DPA = 38°
  • m∠PAB = 52°
  • m∠PCD = m∠PCB = 52°
  • mABP = m∠CBP = 38°.

Properties of a rhombus:

  • Diagonals of a rhombus intersect each other at 90°.
  • Sum of two adjacent angles of a rhombus is 180°.
  • Diagonals bisect opposite angles.

By using property - 1,

m∠APD = m∠DPC = m∠BPC = m∠APB = 90°

Apply triangle sum theorem in ΔAPD,

m∠DAP + m∠APD + m∠DPA = 180°

52° + 90°+ m∠DPA = 180°

m∠DPA = 38°

By using property - 3,

m∠PDC = m∠DPA = 38°

m∠PAB = 52°

By using property - 2,

m∠ADC + m∠DCB = 180°

2(38°) + m∠DCB = 180°

m∠DCB = 104°

Therefore, m∠PCD = m∠PCB = [tex]\frac{104}{2}[/tex] = 52°

m∠DAP = m∠BAP = 52°

Since, m∠ADC = m∠ABC = 76°

Therefore, mABP = m∠CBP = [tex]\frac{76}{2}=38^\circ[/tex]

         Hence, m∠APD = m∠DPC = m∠BPC = m∠APB = 90°, m∠DPA = 38°, m∠PAB = 52°, m∠PCD = m∠PCB = 52°, m∠BAP = 52°, mABP = m∠CBP = 38°.

Learn more about rhombus here,

https://brainly.com/question/11812488?referrer=searchResults

Ver imagen eudora