Respuesta :

Answer:

[tex]\sqrt[3]{2y^3} * 7\sqrt{18y} = 21(y^{\frac{3}{2}})(2^{\frac{5}{6}})[/tex]

Step-by-step explanation:

The question is poorly formatted.

Given

[tex]\sqrt[3]{2y^3} * 7\sqrt{18y}[/tex]

Required

Derive an equivalent expression

[tex]\sqrt[3]{2y^3} * 7\sqrt{18y}[/tex]

Express 18 as 9 * 2

[tex]\sqrt[3]{2y^3} * 7\sqrt{9 * 2y}[/tex]

Split the expression as follows:

[tex]\sqrt[3]{2y^3} * 7\sqrt{9} * \sqrt{2y}[/tex]

Take positive square root of 9

[tex]\sqrt[3]{2y^3} * 7*3 * \sqrt{2y}[/tex]

[tex]\sqrt[3]{2y^3} * 21 * \sqrt{2y}[/tex]

[tex]21*\sqrt[3]{2y^3} * \sqrt{2y}[/tex]

The cube root can be rewritten to give:

[tex]21*\sqrt[3]{2}*\sqrt[3]{y^3} * \sqrt{2y}[/tex]

[tex]\sqrt[3]{y^3} = y^{3*\frac{1}{3}} = y[/tex]

So, we have:

[tex]21*\sqrt[3]{2} * y * \sqrt{2y}[/tex]

Rewrite as:

[tex]21y *\sqrt[3]{2} * \sqrt{2y}[/tex]

Split [tex]\sqrt{2y[/tex]

[tex]21y *\sqrt[3]{2} * \sqrt{2} * \sqrt{y}[/tex]

Collect Like Terms

[tex]21y*\sqrt{y} *\sqrt[3]{2} * \sqrt{2}[/tex]

Represent in index form

[tex]21y*y^{\frac{1}{2}} *2^\frac{1}{3} *2^\frac{1}{2}[/tex]

Apply law of indices

[tex]21*y^{1+\frac{1}{2}} *2^{\frac{1}{3} +\frac{1}{2} }[/tex]

[tex]21*y^{\frac{2+1}{2}} *2^{\frac{2+3}{6}}[/tex]

[tex]21*y^{\frac{3}{2}} *2^{\frac{5}{6}}[/tex]

[tex]21(y^{\frac{3}{2}})(2^{\frac{5}{6}})[/tex]

Hence:

[tex]\sqrt[3]{2y^3} * 7\sqrt{18y} = 21(y^{\frac{3}{2}})(2^{\frac{5}{6}})[/tex]