Respuesta :

Answer:

145°

Step-by-step explanation:

As per the given information: quadrilateral ABCD is a parallelogram.

[tex] m\angle B + m\angle DCB =180\degree \\[/tex]

(adjacent angles of a parallelogram)

[tex] 110\degree + m\angle DCB =180\degree \\

m\angle DCB =180\degree - 110\degree \\

m\angle DCB =70\degree\\

m\angle DCG=\frac{1}{2} m\angle DCB \\(\because GC \: bisects \: \angle DCB) \\

m\angle DCF=\frac{1}{2}\times 70\degree... (\because C-G-F) \\

m\angle DCF=35\degree\\

m\angle BFC = m\angle DCF = 35\degree\\ (Alternate \: \angle s) \\\\

m\angle BFC + m\angle CFA = 180\degree\\ (straight \: line \: \angle s) \\\\

35\degree + m\angle CFA= 180\degree\\

m\angle CFA = 180\degree-35\degree \\\\

m\angle CFA= 145\degree \\\\

\huge\purple {\therefore m\angle GFA = 145\degree} \\(\because C-G-F) \\[/tex]