Answer:
The answer is below
Step-by-step explanation:
The z score is used to determine by how many standard deviations the raw score is above or below the mean. The z score is given as:
[tex]z=\frac{x-\mu}{\sigma}\\\\where\ x=raw\ score,\mu=mean\ and\ \sigma=standard\ deviation \\\\For\ a\ sample\ size\ n: \\\\z=\frac{x-\mu}{\sigma/\sqrt{n} }[/tex]
Given that μ = $72,641 and σ = $30,000.
a) x > $100000
[tex]z=\frac{100000-72641}{30000}=0.91[/tex]
P(x > 100000) = P(z > 0.91) = 1 - 0.8186 = 0.1814
b) n = 5
x > $100000
[tex]z=\frac{100000-72641}{30000/\sqrt{5} }=2.04[/tex]
P(x > 100000) = P(z > 2.04) = 1 - 0.9793 = 0.0207
c) n = 10
x > $100000
[tex]z=\frac{100000-72641}{30000/\sqrt{10} }=2.88[/tex]
P(x > 100000) = P(z > 2.88) = 1 - 0.9980 = 0.002