Respuesta :

Answer:

third option

Step-by-step explanation:

Differentiate using the product rule

Given f(x). g(x) then the derivative is

f(x). g'(x) + g(x). f'(x) ← product rule

Given

[tex]\frac{d}{dx}[/tex](x² secx )

with f(x) = x² and g(x) = secx , then

f'(x) = 2x and g'(x) = secxtanx, thus

[tex]\frac{d}{dx}[/tex](x² secx)

= x². secxtanx + secx. 2x ← factor out xsecx from each term

= xsecx(xtanx + 2) → third option