Answer:
The monthly payments will be $1,912.23.
Explanation:
This can be calculated using the formula for calculating the present value of an ordinary annuity as follows:
PV = P * ((1 - (1 / (1 + r))^n) / r) …………………………………. (1)
Where;
PV at 65 = Present value of the balance of the Porsche = $100,000 * (100% - Percentage of down payment) = $100,000 * (100% - 10%) = $90,000
P = monthly payments = ?
r = Monthly interest rate = Annual interest rate / 12 = 10% / 12 = 0.10 / 12 = 0.00833333333333333
n = number of months = 5 years * 12 months = 60
Substitute the values into equation (1) and solve for P, we have:
$90,000 = P * ((1 - (1 / (1 + 0.00833333333333333))^60) / 0.00833333333333333)
$90,000 = P * 47.0653690237519
P = $90,000 / 47.0653690237519
P = $1,912.23
Therefore, the monthly payments will be $1,912.23.