Answer:
[tex]A' = -51[/tex]
Step-by-step explanation:
Given
[tex]A = \left[\begin{array}{ccc}-2&2&-5\\4&-1&-2\\1&3&-5\end{array}\right][/tex]
Required
Determine the determinant of A (A')
If
[tex]A = \left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right][/tex]
Then,
[tex]A' = a(e*i - f * h) - b(d * i - g * f) + c(d * h - e * g)[/tex]
So:
The determinant of [tex]A = \left[\begin{array}{ccc}-2&2&-5\\4&-1&-2\\1&3&-5\end{array}\right][/tex] is
[tex]A' = -2(-1 * -5 -(-2)*3) -2(4 * -5 -(-2) * 1) -5(4 * 3- (-1) * 1)[/tex]
[tex]A' = -2(5 +6) -2(-20 +2) -5(12 + 1)[/tex]
[tex]A' = -2(11) -2(-18) -5(13)[/tex]
[tex]A' = -22 +36 -65[/tex]
[tex]A' = -51[/tex]
Hence, the determinant is -51